
AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 1

Q2.a) Use HTML to make an image map with clickable regions on it.

Ans:
<html>
<body>

<p>Click on the sun or on one of the planets to watch it closer:</p>

<map name="planetmap">
<area shape="rect" coords="0,0,82,126" alt="Sun" href="sun.htm" />
<area shape="circle" coords="90,58,3" alt="Mercury" href="mercur.htm" />
 <area shape="circle" coords="124,58,8" alt="Venus" href="venus.htm" />
</map>

</body>
</html>

b) What is a frameset? Write HTML code of a frameset to create a table of two rows and a single
table.

Ans: <FRAMESET ...> defines the general layout of a web page that uses frames. <FRAMESET
...> is used in conjunction with <FRAME ...> and <NOFRAMES>.

<FRAMESET ...> creates a "table of documents" in which each rectangle (called a "frame") in
the table holds a separate document. In its simplest use, <FRAMESET ...> states how many
columns and/or rows will be in the "table". You must use either the COLS or the ROWS
attributes or both. For example, this code creates a set of frames that is two columns wide and
two rows deep:

<HTML>
<HEAD>
<TITLE>A Basic Example of Frames</TITLE>
</HEAD>

<FRAMESET ROWS="75%, *" COLS="*, 40%">
 <FRAME SRC="framea.html">
 <FRAME SRC="frameb.html">
 <FRAME SRC="framec.html">
 <FRAME SRC="framed.html">
</FRAMESET>

</HTML>

<FRAMESET ...> itself only define how many rows and columns of frames there will be.
<FRAME ...> defines what files will actual go into those frames.

http://www.htmlcodetutorial.com/frames/_FRAME.html
http://www.htmlcodetutorial.com/frames/_NOFRAMES.html
http://www.htmlcodetutorial.com/frames/_FRAME.html

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 2

<FRAMESET ...> can be nested within another <FRAMESET ...> to create a "table within a
table". By doing this you can create frames that are not strict grids like in the example above.
This set of nested framesets creates the popular "title and sidebar" layout.

<HTML>
<HEAD>
<TITLE>Great Recipes</TITLE>
</HEAD>

<FRAMESET ROWS="15%,*">
 <FRAME SRC="recipetitlebar.html" NAME=TITLE SCROLLING=NO>

 <FRAMESET COLS="20%,*">
 <FRAME SRC="recipesidebar.html" NAME=SIDEBAR>
 <FRAME SRC="recipes.html" NAME=RECIPES>
 </FRAMESET>
</FRAMESET>

</HTML>

The first <FRAMESET ...> creates a "table" of two rows and only one column (because there is
no COLS attribute). The first row in the frameset is filled in by the first <FRAME ...>. The row
in the frameset is filled in not by a frame but by another <FRAMESET ...>. This inner frameset
has two columns, which are filled in by two <FRAMESET ...>'s.

c) Write a HTML code to link to a mail message(assuming that the mail is already installed).

Ans:
<html>
<body>

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 3

<p>
This is an email link:

Send Mail
</p>

<p>
Note: Spaces between words should be replaced by %20 to ensure that the browser will
display the text properly.
</p>

</body>
</html>

Q3. (a) Using CSS, write a code to create a transparent box with text on a background image.

Ans:
<html>
<head>
<style type="text/css">
div.background
{
 width: 500px;
 height: 250px;
 background: url(klematis.jpg) repeat;
 border: 2px solid black;
}
div.transbox
{
 width: 400px;
 height: 180px;
 margin: 30px 50px;
 background-color: #ffffff;
 border: 1px solid black;
 opacity:0.6;
 filter:alpha(opacity=60); /* For IE8 and earlier */
}
div.transbox p
{
 margin: 30px 40px;
 font-weight: bold;
 color: #000000;
}
</style>
</head>
<body><div class="background">
<div class="transbox">
<p>This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 4

This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.
This is some text that is placed in the transparent box.
</p>
</div>
</div>
</body>
</html>

b) Discuss the following CSS terms with examples:

i. CSS Border
Ans: (i) CSS Border Properties:

The CSS border properties allow you to specify the style and color of an element'sborder.

Border Style
The border-style property specifies what kind of border to display.
None of the border properties will have ANY effect unless the border-style property is set!

border-style values:

none: Defines no border

dotted: Defines a dotted border

dashed: Defines a dashed border

solid: Defines a solid border

double: Defines two borders. The width of the two borders are the same as the border-width
value

groove: Defines a 3D grooved border. The effect depends on the border-color value

ridge: Defines a 3D ridged border. The effect depends on the border-color value

inset: Defines a 3D inset border. The effect depends on the border-color value

outset: Defines a 3D outset border. The effect depends on the border-color value

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 5

Border Width

The border-width property is used to set the width of the border.

The width is set in pixels, or by using one of the three pre-defined values: thin, medium, or thick.

Note: The "border-width" property does not work if it is used alone. Use the "border-style"
property to set the borders first.

Example
p.one
{
border-style:solid;
border-width:5px;
}
p.two
{
border-style:solid;
border-width:medium;
}

Border Color

The border-color property is used to set the color of the border. The color can be set by:

• name - specify a color name, like "red"
• RGB - specify a RGB value, like "rgb(255,0,0)"
• Hex - specify a hex value, like "#ff0000"

You can also set the border color to "transparent".

The "border-color" property does not work if it is used alone. Use the "border-style" property to
set the borders first.

Example
p.one
{
border-style:solid;
border-color:red;
}
p.two
{
border-style:solid;

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 6

border-color:#98bf21;
}

Border - Individual sides

In CSS it is possible to specify different borders for different sides:

Example
p
{
border-top-style:dotted;
border-right-style:solid;
border-bottom-style:dotted;
border-left-style:solid;
}

The example above can also be set with a single property:

Example
border-style:dotted solid;

The border-style property can have from one to four values.

• border-style:dotted solid double dashed;
o top border is dotted
o right border is solid
o bottom border is double
o left border is dashed

• border-style:dotted solid double;
o top border is dotted
o right and left borders are solid
o bottom border is double

• border-style:dotted solid;
o top and bottom borders are dotted
o right and left borders are solid

• border-style:dotted;
o all four borders are dotted

The border-style property is used in the example above. However, it also works with border-
width and border-color.

Border - Shorthand property

As you can see from the examples above, there are many properties to consider when dealing
with borders.

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 7

To shorten the code, it is also possible to specify all the border properties in one property. This is
called a shorthand property.

The shorthand property for the border properties is "border":

Example
border:5px solid red;

When using the border property, the order of the values are:

• border-width
• border-style
• border-color

It does not matter if one of the values above are missing (although, border-style is required), as
long as the rest are in the specified order.

ii. Padding Properties

Ans. (ii) The CSS padding properties define the space between the element border and the
element content.

Padding

The padding clears an area around the content (inside the border) of an element. The padding is
affected by the background color of the element.

The top, right, bottom, and left padding can be changed independently using separate properties.
A shorthand padding property can also be used, to change all paddings at once.

Possible Values

Value Description
Length Defines a fixed padding (in pixels, pt, em, etc.)
% Defines a padding in % of the containing element

Padding - Individual sides In CSS, it is possible to specify different padding for different sides:
Example
padding-top:25px;
padding-bottom:25px;
padding-right:50px;
padding-left:50px;
Padding - Shorthand property

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 8

To shorten the code, it is possible to specify all the padding properties in one property. This is
called a shorthand property.

The shorthand property for all the padding properties is "padding":

Example
padding:25px 50px;

The padding property can have from one to four values.

• padding:25px 50px 75px 100px;
o top padding is 25px
o right padding is 50px
o bottom padding is 75px
o left padding is 100px

• padding:25px 50px 75px;
o top padding is 25px
o right and left paddings are 50px
o bottom padding is 75px

• padding:25px 50px;
o top and bottom paddings are 25px
o right and left paddings are 50px

• padding:25px;
• all four paddings are 25px

iv. CSS media types

Ans. (iv) Media Types allow you to specify how documents will be presented in different media.
The document can be displayed differently on the screen, on the paper, with an aural browser,
etc.

Media Types

Some CSS properties are only designed for a certain media. For example the "voice-family"
property is designed for aural user agents. Some other properties can be used for different media
types. For example, the "font-size" property can be used for both screen and print media, but
perhaps with different values. A document usually needs a larger font-size on a screen than on
paper, and sans-serif fonts are easier to read on the screen, while serif fonts are easier to read on
paper.

The @media Rule

The @media rule allows different style rules for different media in the same style sheet.

The style in the example below tells the browser to display a 14 pixels Verdana font on the
screen. But if the page is printed, it will be in a 10 pixels Times font. Notice that the font-weight
is set to bold, both on screen and on paper:

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 9

<html>
<head>
<style>
@media screen
 {
 p.test {font-family:verdana,sans-serif;font-size:14px;}
 }
@media print
 {
 p.test {font-family:times,serif;font-size:10px;}
 }
@media screen,print
 {
 p.test {font-weight:bold;}
 }
</style>
</head>

<body>
....
</body>
</html>
Different Media Types

Note: The media type names are not case-sensitive.

Media Type Description
all Used for all media type devices
aural Used for speech and sound synthesizers
braille Used for braille tactile feedback devices
embossed Used for paged braille printers
handheld Used for small or handheld devices
print Used for printers
projection Used for projected presentations, like slides
screen Used for computer screens
tty Used for media using a fixed-pitch character grid, like teletypes and

terminals
tv Used for television-type devices

Q4 a) Write a code in Javascript which checks if a field has been left empty. If the field is
blank, an alert box alerts a message, the function returns false, and the form will not be
submitted.

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 10

Ans:

 function validateForm()
{
var x=document.forms["myForm"]["fname"].value;
if (x==null || x=="")
 {
 alert("First name must be filled out");
 return false;
 }
}

The function above could be called when a form is submitted:

<form name="myForm" action="demo_form.asp" onsubmit="return validateForm()"
method="post">
First name: <input type="text" name="fname">
<input type="submit" value="Submit">
</form>

b) Write a Javascript code to resize a window to a specified size.

Ans:

 <html>
<head>
<script type="text/javascript">
function resizeWindow()
{
top.resizeTo(500,300);
}
</script>
</head>

<body>
<form>
<input type="button" onclick="resizeWindow()" value="Resize window" />
</form>
<p>Note: We have used the top element instead of the window
element, because we use frames. If you do not use frames, use the window element
instead.</p>
</body>

</html>

c) Explain the terms ‘Exception Handling’ with an appropriate example in Javascript.

Ans: The try...catch statement allows you to test a block of code for errors. The try block
contains the code to be run, and the catch block contains the code to be executed if an error
occurs.

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 11

Syntax
try
 {
 //Run some code here
 }
catch(err)
 {
 //Handle errors here
 }

Note that try...catch is written in lowercase letters. Using uppercase letters will generate a
JavaScript error!

The example below is supposed to alert "Welcome guest!" when the button is clicked. However,
there's a typo in the message() function. alert() is misspelled as adddlert(). A JavaScript error
occurs. The catch block catches the error and executes a custom code to handle it. The code
displays a custom error message informing the user what happened:

Example
<html>
<head>
<script type="text/javascript">
var txt="";
function message()
{
try
 {
 adddlert("Welcome guest!");
 }
catch(err)
 {
 txt="There was an error on this page.\n\n";
 txt+="Error description: " + err.description + "\n\n";
 txt+="Click OK to continue.\n\n";
 alert(txt);
 }
}
</script>
</head>

<body>
<input type="button" value="View message" onclick="message()" />
</body>

</html>

The next example uses a confirm box to display a custom message telling users they can click
OK to continue viewing the page or click Cancel to go to the homepage. If the confirm method

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 12

returns false, the user clicked Cancel, and the code redirects the user. If the confirm method
returns true, the code does nothing:

Example

<html>
<head>
<script type="text/javascript">
var txt="";
function message()
{
try
 {
 adddlert("Welcome guest!");
 }
catch(err)
 {
 txt="There was an error on this page.\n\n";
 txt+="Click OK to continue viewing this page,\n";
 txt+="or Cancel to return to the home page.\n\n";
 if(!confirm(txt))
 {
 document.location.href="http://www.w3schools.com/";
 }
 }
}
</script>
</head>

<body>
<input type="button" value="View message" onclick="message()" />
</body>

</html>

The throw Statement

The throw statement can be used together with the try...catch statement, to create an exception
for the error

Q5 a) Generate a multiplication table using nested loops in Javascript.

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 13

 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
 4 8 12 16 20 24 28 32 36
 5 10 15 20 25 30 35 40 45
 6 12 18 24 30 36 42 48 54
 7 14 21 28 35 42 49 56 63
 8 16 24 32 40 48 56 64 72
 9 18 27 36 45 54 63 72 81
 10 20 30 40 50 60 70 80 90

Ans:

<SCRIPT>

// Use single-spaced text for Multiplication table
document.write("<CENTER><BLOCKQUOTE><PRE><FONT
COLOR='FF0000'">)

var i, j, total; // global variables

for (i = 1; i <= 10; i++) {
 for (j = 1; j < 10; j++) {
 total = i * j;
 total = " " + total //add space before each number

 // Add another space before single digits
 if (total < 10) total = " " + total;

 // Display result
 document.write(total);
 } // end inner j loop

 document.write("
"); // end of line break
 } // end of i outer loop

document.write("</PRE></BLOCKQUOTE></CENTER>");

</SCRIPT>

for (i = 1; i <= 10; i++) { // when i = 1
 for (j = 1; j < 10; j++) {

 when j = 1 => i * j = 1 * 1 = 1
 when j = 2 => i * j = 1 * 2 = 2
 when j = 3 => i * j = 1 * 3 = 3
 etc...

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 14

 when j = 10 => i * j = 1 * 10 = 10
break out of the inner loop & go back to the outer loop

for (i = 1; i <= 10; i++) { // when i = 2
 for (j = 1; j < 10; j++) {

 when j = 1 => i * j = 2 * 1 = 2
 when j = 2 => i * j = 2 * 2 = 4
 when j = 3 => i * j = 2 * 3 = 6
 etc...
 when j = 10 => i * j = 2 * 10 = 20
break out of the inner loop & go back to the outer loop

etc...

for (i = 1; i <= 10; i++) { // when i = 10
 for (j = 1; j < 10; j++) {

 when j = 1 => i * j = 10 * 1 = 10
 when j = 2 => i * j = 10 * 2 = 20
 when j = 3 => i * j = 10 * 3 = 30
 etc...
 when j = 10 => i * j = 10 * 10 = 100

Finished at this point

b) How can we download multiple pages in a single download? Explain by using a DHTL and
Javascript program.

Ans:

 #!/usr/bin/perl
#=== VARIABLES ===#

$cal_prog="/usr/bin/cal";#cal program is usually /bin/cal or /usr/bin/cal

$inner="#D3D3D3"; #Inside table color

$width="WIDTH=\"30\"";#Inside table cell width

$align="ALIGN=\"RIGHT\""; #Table cell align

$color="COLOR=\"#003CBA\"";#The current date color

@MONTH=(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);

@DAY= (Sun,Mon,Tue,Wed,Thu,Fri,Sat);

#=== GET DATE & ADJUST ===#

(undef,undef,undef,$mday,$mon,$year,$wday,undef,undef) = localtime(time);

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 15

$year += 1900;#ADJUST YEAR FROM 103 TO 2003

if($mday<10) {$mday="0$mday";}#ADJUST DATE IF LESS THAN 10

$mo_num=$mon+1;

#=== START CALENDER TABLE ===#

print <<HEADER;

Content-type: text/html

<TABLE BORDER=1 BGCOLOR=$inner>

 <TH>$DAY[$wday] $MONTH[$mon] $mday $year</TH>

 <TR><TD>

 <TABLE BORDER=1 BGCOLOR=$inner>

<TR>

HEADER

for($cnt=0;$cnt<7;$cnt++) {

print "<TD $align $width>$DAY[$cnt]</TD>\n";

 }

print "</TR>";

#=== START DATES ON EACH DAY ===#

#THE 'if' below tosses out the first two lines and the last empty one

open(INCAL,"$cal_prog $mo_num $year | ") or die "Can't run $cal_prog: $!";

$cnt=1;

while($in_line = <INCAL>)

{

 if($cnt > 2 && $in_line ge " ")

 {

 chop $in_line;

 $sun=substr($in_line,0,2);

 $mon=substr($in_line,3,2);

 $tue=substr($in_line,6,2);

 $wed=substr($in_line,9,2);

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 16

 $thu=substr($in_line,12,2);

 $fri=substr($in_line,15,2);

 $sat=substr($in_line,18,2);

 print "<TR>\n";

 if($sun eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$sun</TD>\n";}

 if($mon eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$mon</TD>\n";}

 if($tue eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$tue</TD>\n";}

 if($wed eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$wed</TD>\n";}

 if($thu eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$thu</TD>\n";}

 if($fri eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$fri</TD>\n";}

 if($sat eq $mday) {print "<TD $align>$mday</TD>\n";}

 else{print "<TD $align>$sat</TD>\n";}

 print "</TR>\n";

 }

 $cnt++;

}

#=== END CALENDER TABLE ===#

print <<FOOTER;

 </TABLE>

 </TD></TR>

</TABLE>

FOOTER

close(INCAL);

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 17

exit(0);

Q6 b) Write short notes on the following:

i. PERL Control Structures

Ans: i. Control Structures

Control Structures provide a means of controlling the flow of a program. So far we've looked
only at basic expressions, now we look at how to tie these expressions together in to a program
that can iterate (loop) or make decisions (conditionals) based on the state of variables.

Perl contains the typical assortment of control structures including if-then-else conditionals,
while and for loops. Perl also contains some new control structures you may not have seen
before (new to a C/C++ programmer).

The if statement

The perl if statement looks much like a C if statement. Here is the general structure

if (expression) {

 stmt1;}

The value of expression determines whether or not the perl statement stmt1 is executed. If the
value of expression is considered "TRUE" by perl, then stmt1 is executed, otherwise stmt1 is
skipped.

perl TRUE and FALSE

In the C language any non-zero value is considered to be TRUE and the value 0 is considered
FALSE. In perl things are a bit more complex, this is necessary since we often deal with strings
(not just numbers). In perl, the following determine the TRUTH of an expression:

The numeric value 0 is considered FALSE, all other numeric values are considered TRUE.

The empty string "" is FALSE, any non-empty string is TRUE*.

*: There is an exception to this rule - the string "0" is FALSE

Formally, perl first converts a conditional value to a string and then if the result is either the
empty string or the string "0" the expression is FALSE, otherwise it is TRUE. Note that the
string "00" is considered TRUE!

The special perl value undef is considered false (formally this is because when converted to a
string it has the value "").

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 18

Curly Brackets

In perl you can create a block of statements by enclosing a sequence of statements inside curly
braces { }. In C/C++ a single statment inside a control strucuture (like an IF) does not require
curly braces - in perl the curly braces are always required.

If Examples

We can now look at some example if statements:

prompt and read in a value from stdin

printf("Enter a number greater than 0\n");

$num = <STDIN>;

make sure they followed the directions

if ($num < 1) {

 print "Not a valid number dummy!\n";

}

if the number is less than 50, call user a pessimist

if ($num < 50) {

 print "Your number is too small, you must not be a happy person\n";

}

Perl allows a sequence of statements inside the curly braces, this sequence can include multiple if
statements (any kind of statement). Perl also supports an else continuation of the if. A more
complex example:

prompt and read in a value from stdin

printf("Enter a number between 1 and 100 inclusive\n");

$num = <STDIN>;

make sure they followed the directions

if ($num >= 1) {

 if ($num <= 100) {

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 19

 # They followed directions - now evaluate thier personality

 if ($num < 50) {

 print "Your number is small - you think little of yourself\n";

 } else {

 print "Your number is large - you think too much of yourself\n";

 }

 } else {

 # they entered a number too large - call them a name

 print "Your number is too large dummy!\n";

 }

} else {

 # the number entered is too small - call them a name

 print "Your number is too small you are either a zero or too negative!\n";

}

A common pattern is a sequence of if-else statements. In perl you can combine an else with a
following if with an elsif as in this example:

print "Enter a number between 1 and 100 inclusive\n";

$num = <STDIN>;

1-33 is too small

34-65 is just right

66-100 is too big

if ($num < 1) {

 print "Invalid\n";

} elsif ($num < 34) {

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 20

 print "Too small\n";

} elsif ($num < 66) {

 print "Just right\n";

} elsif ($num < 101) {

 print "Too large\n";

} else {

 print "Invalid\n";

}

The unless Control Structure

Ever want to leave off the if part and just keep the else part of an if-else? Perl has just what you
need - it's called unless. The statments inside an unless are not executed if the conditional
expression is TRUE:

we could do it this way

if ($cookie{$student} eq "chocolatechip") {

 # do nothing - this student is OK

} else {

 print "You fail!\n";

}

or we could use an unless

unless ($cookie{$student} eq "chocolatechip") {

 print "You fail!\n";

}

The while statement

A perl while is used to create iteration (loops). The general form looks like this:

while (expression) {

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 21

 stmt1;

 ... # could be more statments here

}

This is like an if except that stmt1 (and any others inside the braces) is executed over and over as
long as expression is TRUE.

print "Enter a number greater than 0\n";

$num = <STDIN>;

$tries = 1;

keep doing until the user gets it right!

while ($num <= 0) {

 print "Tough day? (try again)\n";

 print "Enter a number greater than 0\n";

 $num = <STDIN>;

 # keep track of how many times it takes to get it right

 $tries = $tries + 1;

}

print "You did that in $tries tries\n";

The until loop

If you would prefer to have the statements inside the loop repeated until some condition is
FALSE, you can use an until:

print "Enter a number greater than 0\n";

$num = <STDIN>;

$tries = 1;

#keep doing until the user gets it right!

until ($num > 0) {

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 22

 print "Tough day? (try again)\n";

 print "Enter a number greater than 0\n";

 $num = <STDIN>;

 # keep track of how many times it takes to get it right

 $tries = $tries + 1;

}

print "You did that in $tries tries\n";

Looping over input

Perl programs often execute a sequence of statements for each line of input read in. The
<STDIN> input operator returns the next line of input available each time it is called, and returns
the special perl value undef when the end of file has been found. We can use <STDIN> as the
condition used to control a loop:

read in lines from stdin one at a time, and print them back out.

while ($line = <STDIN>) {

 print $line;

}

This code simply prints out whatever it gets from STDIN

Logical Operators - OR and AND

Perl supports C style logical operators that can be used to build complex conditionals. The ||
operator is a binary operator that is TRUE if either operand is TRUE. So the expression ($num <
0) || ($num > 100) is true if either $num < 0 or if $num > 100. Perl also supports the &&
operator (logical AND) that is true only when both operands are true. Some examples:

print "Enter a number between 1 and 100 inclusive\n";

$num = <STDIN;>;

if num is less than 1 or greater than 100 - not valid input.

if (($num < 1) || ($num > 100)) {

 print "Dummy - can't you follow directions!?!\n";

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 23

} else {

 print "Excellent - you would make a great physican\n";

}

if num is between 33 and 66 this is a great user!

if (($num>33) && ($num<66)) {

 print "You are quite a user, best I've seen today!\n";

}

It is often useful to realize that the initializer and increment statments can do anything at all!
Here is another example:

print out a list of names, one per line

for (@names = ("Bill","Mary","John","Sue") ; @names != 0 ; shift(@names) {

 print "Name is $names[0]\n";

}

The foreach statement

The perl foreach is another iteration control structure. A scalar variable takes on each of the
values from an array before a block of statements is executed. Here is the general structure:

foreach $var (@an_array) {

 stmt1;

 ... # could be more statements here

}

The first time the body of the loop is executed the variable $var has the value $an_array[0], the
next time it has the value $an_array[1] and so on through the array. An example:

define an array

@names = ("Bill", "Nancy", "John", "Susan");

print out each name on it's own line

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 24

foreach $i (@names) {

 print "Name is $i\n";

}

This code should output:

Name is Bill

Name is Nancy

Name is John

Name is Susan

A foreach doesn't need to have $var specified, so it can look like this:

foreach (@an_array) {

 stmt1;

 ... # could be more statements here

}

If no scalar variable is present in a foreach then perl uses the default scalar variable $_. The
example could now become:

define an array

@names = ("Bill", "Nancy", "John", "Susan");

print out each name on it's own line

foreach (@names) {

 print "Name is $_\n";

}

 ii. Arrays in PERL.

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 25

Ans: We can define Perl arrays as having the following general characteristics:

• they are ordered lists of scalars;
• the variable name starts with the @ character;
• the first element of the list has the index 0, the next has the index 1, and so on;
• the number of array elements is unlimited;
• an element of the array variable starts with the $ character followed by the variable name

and the array element index included in square brackets;

There is an example of a Perl array variable below:
@family = ("father","mother","son","daughter");

In this instance through @family we understand the entire array and if we want to get the first
element of the @family array, we use the notation $family[0]. The strings "father", "mother",
"son" and "daughter" are the elements of the @family array.

Before seeing what we can do with the Perl arrays, let’s speak a bit about context, which is an
important feature of Perl Language. There are two most important Perl contexts: scalar and list.
The context modifies the operators and functions behavior depending on the type of expression
we have to deal with: list or scalar. Please look at these examples shown below:

@v1 = @family;
($v2) = @family;
$v3 = @family;
$v4 = ("father", "mother", "son", "daughter");

In the first example we have list context on the left, after assignment @v1 and @family variables
will have the same content, i. e. the list ("father", "mother", "son", "daughter").

In the second example, we have also list context on the left, but the list on the left has only one
element, so the scalar variable $v2 will be assigned with the first element of the @family array,
i.e. "father".

In the third example, we have scalar context on the left, so after assignment $v3 it will contain
the number of @family array elements (i.e. 4) – because @family was evaluated in a scalar
context.

And finally, in the fourth example we have scalar context on the left, so the variable $v4 will be
assigned step by step with the @family elements and at the end it will contain the last value in
the list, i.e. the string "daughter".

 Q7 a) Write a program in CGI to implement multiline text fields and input. Implement scrolls
also. Explain the tags used and their attributes also.

Ans:
<FORM ACTION="/cgi-bin/program.pl" METHOD="POST">

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 26

<TEXTAREA ROWS=10 COLS=40 NAME="comments">
</TEXTAREA>

This creates a scrolled text field with 10 rows and 40 columns. (10 rows and 40 columns
designates only the visible text area; the text area will scroll if the user types further).

Notice that you need both the beginning <TEXTAREA> and the ending </TEXTAREA> tags.
You can enter default information between these tags.

<TEXTAREA ROWS=10 COLS=40 NAME="comments_2">
This is some default information.
Some more...
And some more...
</TEXTAREA>
</FORM>

You have to remember that newlines (or carriage returns) are not ignored in this field--unlike
HTML. In the preceding example, the three separate lines will be displayed just as you typed
them.

b) Implement reading cookies through CGI and HTML. Explain the code.

Ans:

 #!/usr/bin/perl -wT
use CGI qw(:standard);
use CGI::Carp qw(warningsToBrowser fatalsToBrowser);
use strict;

print header();
print start_html("Cookie");
print h2("Welcome!");

if (my $cookie = cookie('mycookie')) {
 print "Your cookie is $cookie.
";
} else {
 print "You don't have a cookie named `mycookie'.
";
}

print end_html;

c) Give a short note on uploading files on web with PERL.

Ans:

 if ($g_restrict_by_ext == 1)
 {
 my $file=$q::upload_file;
 my @ta=split('\.',$file);

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 27

 my $sz=scalar(@ta);
 if ($sz > 1)
 {
 my $ext=$ta[$sz-1];
 if (! grep(/$ext/i,@g_allowed_ext))
 {
 &printError("You are not allowed to upload this file");
 return;
 }

 }
 else
 {
 &printError("You are not allowed to upload this file");
 return;
 }
 }

 # now upload file
 &uploadFile();

 if ($g_debug == 1)
 {
 my @all=$query->param;
 my $name;
 foreach $name (@all)
 {
 print "$name ->", $query->param($name),"
\n";
 }
 }
}

Q8 a) Give a short note on PHP-XML Parser Functions.

Ans: PHP XML Parser Introduction

The XML functions lets you parse, but not validate, XML documents.

XML is a data format for standardized structured document exchange. More information on
XML can be found in our XML Tutorial.

This extension uses the Expat XML parser.

Expat is an event-based parser, it views an XML document as a series of events. When an event
occurs, it calls a specified function to handle it.

Expat is a non-validating parser, and ignores any DTDs linked to a document. However, if the
document is not well formed it will end with an error message.

http://www.w3schools.com/xml/default.asp

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 28

Because it is an event-based, non validating parser, Expat is fast and well suited for web
applications.

The XML parser functions lets you create XML parsers and define handlers for XML events.

PHP XML Parser Functions
PHP: indicates the earliest version of PHP that supports the function.

Function Description PHP
utf8_decode() Decodes an UTF-8 string to ISO-8859-1 3
utf8_encode() Encodes an ISO-8859-1 string to UTF-8 3
xml_error_string() Gets an error string from the XML

parser
3

xml_get_current_byte_index() Gets the current byte index from the
XML parser

3

xml_get_current_column_number() Gets the current column number from
the XML parser

3

xml_get_current_line_number() Gets the current line number from the
XML parser

3

xml_get_error_code() Gets an error code from the XML parser 3
xml_parse() Parses an XML document 3
xml_parse_into_struct() Parse XML data into an array 3
xml_parser_create_ns() Create an XML parser with namespace

support
4

xml_parser_create() Create an XML parser 3
xml_parser_free() Free an XML parser 3
xml_parser_get_option() Get options from an XML parser 3
xml_parser_set_option() Set options in an XML parser 3
xml_set_character_data_handler() Set handler function for character data 3
xml_set_default_handler() Set default handler function 3
xml_set_element_handler() Set handler function for start and end

element of elements
3

xml_set_end_namespace_decl_handler() Set handler function for the end of
namespace declarations

4

xml_set_external_entity_ref_handler() Set handler function for external entities 3
xml_set_notation_decl_handler() Set handler function for notation

declarations
3

xml_set_object() Use XML Parser within an object 4
xml_set_processing_instruction_handler() Set handler function for processing

instruction
3

xml_set_start_namespace_decl_handler() Set handler function for the start of
namespace declarations

4

xml_set_unparsed_entity_decl_handler() Set handler function for unparsed entity
declarations

3

http://www.w3schools.com/php/func_xml_utf8_decode.asp
http://www.w3schools.com/php/func_xml_utf8_encode.asp
http://www.w3schools.com/php/func_xml_error_string.asp
http://www.w3schools.com/php/func_xml_get_current_byte_index.asp
http://www.w3schools.com/php/func_xml_get_current_column_number.asp
http://www.w3schools.com/php/func_xml_get_current_line_number.asp
http://www.w3schools.com/php/func_xml_get_error_code.asp
http://www.w3schools.com/php/func_xml_parse.asp
http://www.w3schools.com/php/func_xml_parse_into_struct.asp
http://www.w3schools.com/php/func_xml_parser_create_ns.asp
http://www.w3schools.com/php/func_xml_parser_create.asp
http://www.w3schools.com/php/func_xml_parser_free.asp
http://www.w3schools.com/php/func_xml_parser_get_option.asp
http://www.w3schools.com/php/func_xml_parser_set_option.asp
http://www.w3schools.com/php/func_xml_set_character_data_handler.asp
http://www.w3schools.com/php/func_xml_set_default_handler.asp
http://www.w3schools.com/php/func_xml_set_element_handler.asp
http://www.w3schools.com/php/func_xml_set_external_entity_ref_handler.asp
http://www.w3schools.com/php/func_xml_set_notation_decl_handler.asp
http://www.w3schools.com/php/func_xml_set_object.asp
http://www.w3schools.com/php/func_xml_set_processing_instruction_handler.asp
http://www.w3schools.com/php/func_xml_set_unparsed_entity_decl_handler.asp

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 29

b) Using PHP, how can we create a database connection, then a result-set, and finally display the
data in an HTML table.

Ans:

<html>

<body>

<?php

$conn=odbc_connect('northwind','','');

if (!$conn)

 {exit("Connection Failed: " . $conn);}

$sql="SELECT * FROM customers";

$rs=odbc_exec($conn,$sql);

if (!$rs)

 {exit("Error in SQL");}

echo "<table><tr>";

echo "<th>Companyname</th>";

echo "<th>Contactname</th></tr>";

while (odbc_fetch_row($rs))

 {

 $compname=odbc_result($rs,"CompanyName");

 $conname=odbc_result($rs,"ContactName");

 echo "<tr><td>$compname</td>";

 echo "<td>$conname</td></tr>";

 }

odbc_close($conn);

echo "</table>";

?>

</body>

</html>

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 30

Q 9 a) Exemplify DOM to present an XML document as a tree-structure.

Ans: The XML DOM views an XML document as a tree-structure. The tree structure is called a
node-tree.

All nodes can be accessed through the tree. Their contents can be modified or deleted, and new
elements can be created.

The node tree shows the set of nodes, and the connections between them. The tree starts at the
root node and branches out to the text nodes at the lowest level of the tree:

The nodes in the node tree have a hierarchical relationship to each other.

The terms parent, child, and sibling are used to describe the relationships. Parent nodes have
children. Children on the same level are called siblings (brothers or sisters).

In a node tree, the top node is called the root
Every node, except the root, has exactly one parent node
A node can have any number of children
A leaf is a node with no children
Siblings are nodes with the same parent

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 31

Because the XML data is structured in a tree form, it can be traversed without knowing the exact
structure of the tree and without knowing the type of data contained within.

First Child - Last Child
Look at the following XML fragment:

<bookstore>
 <book category="cooking">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year>
 <price>30.00</price>
 </book>
</bookstore>
In the XML above, the <title> element is the first child of the <book> element, and the <price>
element is the last child of the <book> element.

Furthermore, the <book> element is the parent node of the <title>, <author>, <year>, and
<price> elements

b) Give short notes on:

 i. XML Namespaces
 ii. PHP printf formatting code

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 32

Ans: An Exception With PHP 5 came a new object oriented way of dealing with errors.

Exception handling is used to change the normal flow of the code execution if a specified error
(exceptional) condition occurs. This condition is called an exception.

This is what normally happens when an exception is triggered:

• The current code state is saved
• The code execution will switch to a predefined (custom) exception handler function
• Depending on the situation, the handler may then resume the execution from the saved

code state, terminate the script execution or continue the script from a different location
in the code

We will show different error handling methods:

• Basic use of Exceptions
• Creating a custom exception handler
• Multiple exceptions
• Re-throwing an exception
• Setting a top level exception handler

Note: Exceptions should only be used with error conditions, and should not be used to jump to
another place in the code at a specified point

Basic Use of Exceptions

When an exception is thrown, the code following it will not be executed, and PHP will try to find
the matching "catch" block.

If an exception is not caught, a fatal error will be issued with an "Uncaught Exception" message.

Lets try to throw an exception without catching it:

<?php
//create function with an exception
function checkNum($number)
 {
 if($number>1)
 {
 throw new Exception("Value must be 1 or below");
 }
 return true;
 }

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 33

//trigger exception
checkNum(2);
?>

The code above will get an error like this:

Fatal error: Uncaught exception 'Exception'
with message 'Value must be 1 or below' in C:\webfolder\test.php:6
Stack trace: #0 C:\webfolder\test.php(12):
checkNum(28) #1 {main} thrown in C:\webfolder\test.php on line 6

Try, throw and catch

To avoid the error from the example above, we need to create the proper code to handle an
exception.

Proper exception code should include:

1. Try - A function using an exception should be in a "try" block. If the exception does not
trigger, the code will continue as normal. However if the exception triggers, an exception
is "thrown"

2. Throw - This is how you trigger an exception. Each "throw" must have at least one
"catch"

3. Catch - A "catch" block retrieves an exception and creates an object containing the
exception information

Lets try to trigger an exception with valid code:

<?php
//create function with an exception
function checkNum($number)
 {
 if($number>1)
 {
 throw new Exception("Value must be 1 or below");
 }
 return true;
 }

//trigger exception in a "try" block
try
 {
 checkNum(2);
 //If the exception is thrown, this text will not be shown

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 34

 echo 'If you see this, the number is 1 or below';
 }

//catch exception
catch(Exception $e)
 {
 echo 'Message: ' .$e->getMessage();
 }
?>

The code above will get an error like this:

Message: Value must be 1 or below

The code above throws an exception and catches it:

1. The checkNum () function is created. It checks if a number is greater than 1. If it is, an
exception is thrown

2. The checkNum () function is called in a "try" block
3. The exception within the checkNum () function is thrown
4. The "catch" block retrives the exception and creates an object ($e) containing the

exception information
5. The error message from the exception is echoed by calling $e->getMessage () from the

exception object

However, one way to get around the "every throw must have a catch" rule is to set a top-level
exception handler to handle errors that slip through.

Creating a custom exception handler is quite simple. We simply create a special class with
functions that can be called when an exception occurs in PHP. The class must be an extension of
the exception class.

The custom exception class inherits the properties from PHP's exception class and you can add
custom functions to it.

Lets create an exception class:

<?php
class customException extends Exception
 {
 public function errorMessage()
 {
 //error message
 $errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile()

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 35

 .': '.$this->getMessage().' is not a valid E-Mail address';
 return $errorMsg;
}
}

$email = "someone@example...com";

try
 {
 //check if
 if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE)
 {
 //throw exception if email is not valid
 throw new customException($email);
 }
 }

catch (customException $e)
 {
 //display custom message
 echo $e->errorMessage();
 }
/>

The new class is a copy of the old exception class with an addition of the errorMessage()
function. Since it is a copy of the old class, and it inherits the properties and methods from the
old class, we can use the exception class methods like getLine() and getFile() and getMessage().

The code above throws an exception and catches it with a custom exception class:

1. The customException() class is created as an extension of the old exception class. This
way it inherits all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-
mail address is invalid

3. The $email variable is set to a string that is not a valid e-mail address
4. The "try" block is executed and an exception is thrown since the e-mail address is invalid
5. The "catch" block catches the exception and displays the error message

Multiple Exceptions

It is possible for a script to use multiple exceptions to check for multiple conditions.

It is possible to use several if..else blocks, a switch, or nest multiple exceptions. These
exceptions can use different exception classes and return different error messages:

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 36

<?php
class customException extends Exception
{
public function errorMessage()
{
//error message
$errorMsg = 'Error on line '.$this->getLine().' in '.$this->getFile()
.': '.$this->getMessage().' is not a valid E-Mail address';
return $errorMsg;
}
}

$email = "someone@example.com";

try
 {
 //check if
 if(filter_var($email, FILTER_VALIDATE_EMAIL) === FALSE)
 {
 //throw exception if email is not valid
 throw new customException($email);
 }
 //check for "example" in mail address
 if(strpos($email, "example") !== FALSE)
 {
 throw new Exception("$email is an example e-mail");
 }
 }

catch (customException $e)
 {
 echo $e->errorMessage();
 }

catch(Exception $e)
 {
 echo $e->getMessage();
 }
?>

Example explained:

The code above tests two conditions and throws an exception if any of the conditions are not
met:

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 37

1. The customException() class is created as an extension of the old exception class. This
way it inherits all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-
mail address is invalid

3. The $email variable is set to a string that is a valid e-mail address, but contains the string
"example"

4. The "try" block is executed and an exception is not thrown on the first condition
5. The second condition triggers an exception since the e-mail contains the string "example"
6. The "catch" block catches the exception and displays the correct error message

If there was no customException catch, only the base exception catch, the exception would be
handled there

Re-throwing Exceptions

Sometimes, when an exception is thrown, you may wish to handle it differently than the standard
way. It is possible to throw an exception a second time within a "catch" block.

A script should hide system errors from users. System errors may be important for the coder, but
is of no interest to the user. To make things easier for the user you can re-throw the exception
with a user friendly message:

<?php
class customException extends Exception
 {
 public function errorMessage()
 {
 //error message
 $errorMsg = $this->getMessage().' is not a valid E-Mail address.';
 return $errorMsg;
 }
 }

$email = "someone@example.com";

try
 {
 try
 {
 //check for "example" in mail address
 if(strpos($email, "example") !== FALSE)
 {
 //throw exception if email is not valid
 throw new Exception($email);

AC75/AT75 INTERNET APPLICATIONS DECEMBER
2012

© IETE 38

 }
 }
 catch(Exception $e)
 {
 //re-throw exception
 throw new customException($email);
 }
 }

catch (customException $e)
 {
 //display custom message
 echo $e->errorMessage();
 }
?>

The code above tests if the email-address contains the string "example" in it, if it does, the
exception is re-thrown:

1. The customException() class is created as an extension of the old exception class. This
way it inherits all methods and properties from the old exception class

2. The errorMessage() function is created. This function returns an error message if an e-
mail address is invalid

3. The $email variable is set to a string that is a valid e-mail address, but contains the string
"example"

4. The "try" block contains another "try" block to make it possible to re-throw the exception
5. The exception is triggered since the e-mail contains the string "example"
6. The "catch" block catches the exception and re-throws a "customException"
7. The "customException" is caught and displays an error message

If the exception is not caught in its current "try" block, it will search for a catch block on "higher
levels".

Also refer to Page No. 456 of Textbook

TEXTBOOK

Web Programming – Building Internet Applications, Chris Bates, Third
Edition, Wiley Student Edition, 2006

	Border Width
	Example
	Border Color
	Example
	Border - Individual sides
	Example
	Example
	Example
	Padding
	Possible Values
	Padding - Individual sides In CSS, it is possible to specify different padding for different sides:
	Example
	padding-top:25px; padding-bottom:25px; padding-right:50px; padding-left:50px;
	Padding - Shorthand property
	Example
	Media Types
	The @media Rule
	Different Media Types
	Syntax

	Example
	Example
	The throw Statement
	Ans: PHP XML Parser Introduction
	PHP XML Parser Functions
	PHP: indicates the earliest version of PHP that supports the function.
	Basic Use of Exceptions
	Try, throw and catch
	Multiple Exceptions
	Example explained:
	Re-throwing Exceptions

